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What is FermiGrid

● Virtual Organization Management Server (VOMS)
– Attaches extended key attributes to x509 certificates
– fermilab, dzero, sdss, des, gadu, nanohub, ilc, lqcd, i2u2, 

osg
● Sitewide Globus Gatekeeper

– CMSWC1, CMSWC2, CMSWC3, CDFOSG1, CDFOSG2, 
CDFOSG3, CDFOSG4, D0CABOSG1, D0CABOSG2, 
GPGRID, et al.

● Grid User Management Server (GUMS)
– Maps every user to a local UID

● Compute and storage resources
– Peak of 1.1M mappings per day 

● Site AuthoriZation Server (SAZ)
– Authorizes grid batch processing jobs 
– Peak of 300K authorizations per day 
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1 –  User obtains x509 certificate (one time only –  renew periodically)
2 –  User registers cert with VO via VOMRS, requests group, subgroup, and role (one time only –  can update)
3 –  VOMRS syncs to VOMS (every 30 minutes)
4 –  GUMS pulls DN+FQAN from VOMS (every 60 minutes)
5 –  User obtains voms proxy certificate (when necessary)
6a –  User submits job to FermiGrid gateway
7a –  Gatekeeper maps DN+FQAN against GUMS
8 –  Gatekeeper authorizes user against SAZ
9 –  Gatekeeper forwards job to appropriate grid cluster
alternative:
6b –  accesses dCache via SRM
7b –  dCache maps DN+FQAN against GUMS via gPlazma

Only accessible within fnal.gov
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Why does FermiGrid need to be 
Highly Available

● Without VOMS extended attributes VO 
members can't map to local UID

● All compute jobs on all worker nodes are 
mapped by GUMS

● All compute jobs on all worker nodes are 
authorized by SAZ

● All file access requests to CMS and public 
dCache systems are mapped by GUMS

● Average of 10,000 mappings per hour!
● These services are critical to data access 

and data analysis!



How We Made FermiGrid 
Highly Available

● Make services fault tolerant
– Replicate data and services, add failover 

capabilities (aka active-passive)
– Vulnerable to overloading, service time-outs

● Make services load balanced
– Replicate data and services, add load balancer 

(aka active-active)
– Solves the (N-1) system failure problem
– Solves the overloaded system problem, scales 

linearly with number of systems



How We Made FermiGrid 
Highly Available

● More specifically
– Multiple systems, currently 2 physical machines

● Hardware details later...
– Multiple Virtual Machines on each physical 

machine, currently 4 (tune in Feb 28, 2008)
– Replicate data across systems

● Shared-nothing: no shared FS, no FC, no NFS
– Replicate services on multiple machines

● Without modifying source code 
– Add HA abstraction layer

● Single point of contact presented to clients
– voms.fnal.gov, gums.fnal.gov, saz.fnal.gov, fg-mysql.fnal.gov

● Multiple servers on the backend
– fg5x1/fg6x1, fg5x2/fg6x2, fg5x3/fg6x3, fg5x4/fg6x4



How We Made FermiGrid 
Highly Available

● Currently 2 physical machines
– Dell 2950
– Dual core, dual CPU, 3GHz
– 16GB RAM
– Dual Gigabit ethernet NICs
– 150GB RAID 1
– Redundant Power Supplies

● Xen – covered Feb 28 by Steve Timm
– fermigrid5 hosts fg5x1, fg5x2, fg5x3, fg5x4
– fermigrid6 hosts fg6x1, fg6x2, fg6x3, fg6x4



How We Made FermiGrid 
Highly Available
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How We Made FermiGrid 
Highly Available

● MySQL Replication
– Investigated several technologies

● MySQL Cluster
● drbd – distributed remote block device
● mysqlhotcopy
● mysqldump + rsync
● Multi-master replication (requires MySQL >v5.0.2)

– Decided on Multi-master replication 
– Scales well to 10 systems

● currently only using 2
– Near real-time replication, 1.1ms for 1KB record
– Database server outages handled correctly

● Logs replayed after server rejoins chain



How We Made FermiGrid 
Highly Available

● MySQL Replication, cont'd
– Complete failure requires full copy (obviously)
– >2 systems require special techniques to close 

the circular chain in the event of failure
● Service Replication

– 2 VOMS “servers”, one each on fg5x1 & fg6x1
● Each machine serves 12 VOs

– 2 GUMS servers, one each on fg5x2 & fg6x2
– 2 SAZ servers, one each on fg5x3 & fg6x3
– All services use replicated MySQL servers on 

fg5x4 and fg6x4
– No source code modifications



How We Made FermiGrid 
Highly Available

● High Availability and Load Balancing
– Investigated several technologies

● Heartbeat (active-passive)
● Round-robin DNS (not supported at Fermi, $$)
● Linux Virtual Server (LVS)

– Selected Linux Virtual Server
● Piranha product from Red Hat
● Use Direct Routing (LVS-DR) method

– Listens on voms.fnal.gov, gums.fnal.gov, 
saz.fnal.gov, fg-mysql.fnal.gov

– Re-directs connections based on IP+port to 
backend “real servers”

● Uses weighted least connections (WLC) to schedule 
connection requests

– Other algorithms available



How We Made FermiGrid 
Highly Available

● High Availability and Load Balancing, cont'd
– In LVS-DR, real servers respond directly to client
– LVS “pings” services for availability

● Removes service from scheduling if unavailable
● Adds service back in when available

– LVS master server is fermigrid5
– LVS backup server is fermigrid6

● Active-passive configuration 
● Failover in 6 seconds
● Active connections to backend servers are maintained

– If a service or real server fails during an open 
connection, the connection is lost.



How We Made FermiGrid 
Highly Available
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Note 2: LVS directors displayed separately for convenience – they are the same in reality



Testing FermiGrid 
High Availability

● Each service tested for load, stability, fault 
tolerance before deploying in production
– 25 clients

● GUMS successfully mapped at 112Hz, 9.7M/day
– System load – 9.2, CPU – 92%

● SAZ successfully authorized at 12Hz (1.1M/day)
– System load – 12, CPU – 100%

● VOMS works
– No stress testing performed – only 1,800 requests/day

● MySQL successfully queried at 125Hz (10.8M/day)
– System load – 0.2, CPU – 10%

● Each service performed without fault for many hours 
under these extreme loads



Testing FermiGrid 
High Availability

– Fault tolerance testing was successful
● Simulated failures of VOMS, GUMS, and SAZ

– Disabled network
● New requests not routed to failed server

– Re-enabled network
● server added back to the pool for scheduling

– Open connections during service failure are lost.
● No cheap and easy way to migrate TCP syn/ack 

sequences to another real server. 
● Affected number of connections is very small (1-2)

● Simulated failure of MySQL server
– After re-enabling server, transaction logs replayed 

automatically
● Simulated LVS failure

– Hot standby LVS server successfully took over in 6 seconds
– Open connections maintained across failover



The Cost of Building FermiGrid 
High Availabilty

● Hardware
– 2 Dell 2950s - $18,975.00

● Software
– Open Source Software - $0

● Manpower
– Approximately 50% FTE



The Cost of Building FermiGrid 
High Availabilty

● Timetable
– Equipment received on Jun 5, 2007
– OS install and Xen work started early Jul, 2007
– Load balancing work started on Aug 23, 2007
– MySQL replication completed Aug 24, 2007
– VOMS install completed Sep 27, 2007
– GUMS install completed Sept 28, 2007
– SAZ and LVS installs completed mid Oct, 2007
– All testing completed Nov 2, 2007
– All services placed into production Dec 3, 2007
– Documentation written in parallel with work 

performed



Future Work for FermiGrid 
High Availability

● Making the following services highly 
available are dependent on furlough 
schedules and available funds
– Squid
– Ganglia
– syslog-ng
– Myproxy
– Condor
– Globus gatekeeper



Conclusion

● FermiGrid is the site job submission portal
– Provides authentication and authorizations for all 

compute jobs and dCache access
● FermiGrid must be available at all times

– 5,000 – 50,000 “jobs” per hour depend on 
FermiGrid services being available

● MySQL multi-master replication and Linux 
Virtual Server technology provides a stable, 
fault tolerant and highly available system



Conclusion

● Testing we have performed shows FermiGrid 
HA system is stable and capable of providing 
10x our current needs
– Scaling up only requires more hardware

● Cost of LVS is much, much less than a Cisco 
Round-robin DNS blade.



Bonus Material

● More LVS details
– 3 modes of operation

● Network address translation (NAT)
– Real Servers live on a private LAN
– All traffic flows through LVS director node - bottleneck!

● Tunneling using IP encapsulation 
– Real Servers live on any public network, LAN or WAN
– Good for geographically separated Real Servers
– Real Servers answer directly to client – no bottleneck
– Real Servers must be able to un-encapsulate IP packets

● Direct Routing
– Real Servers and Director mustmust live on same physical 

subnet
– Director re-writes MAC in address frame and transmits on 

LAN
– Real Servers respond directly to client – no bottleneck



Bonus Material

● More LVS details
– Director maintains a hash table of open 

connections
● Hash table is mirrored to backup LVS director

– For long lived, transactional, and SSL 
connections, use persistence

– Solving the ARP problem
● Option A: use Transparent Proxy on Real Servers

– Virtual Service IP (VIP) is not actually running on Real 
Server

– Configured using iptables
● Option B: use a real IP on a hidden interface (lo:0)

– Enable net.ipv4.conf.all.arp_ignore to not respond to arp 
requests on VIP interface



Bonus Material

● Multi-homed SSL web servers on the same 
physical system
– Can't use Transparent Proxy – must use IP on 

hidden interface
● For >1 web server with separate hostnames running on 

the same machine, apache must bind to the IP of the 
service running (i.e., Listen 1.2.3.4)

– voms.opensciencegrid.org
– voms.fnal.gov

● Separate VirtualHost directives containing the correct 
x509 service certificate with the appropriate hostname 
in the CN must be specified for each IP apache listens 
on.



Bonus Material

● Issues with multi-master MySQL replication
– External data (i.e., on the filesystem) referenced 

within the MySQL database are not replicated
● Use rsync

– Replication across timezones, national 
languages, etc. can cause problems

● All our servers are local
– Auto incrementing column problem

● Use auto_increment_increment (10)
● Use auto_increment_offset (1,2,3,...)


